Pore Pressure Dissipation Tests (PPDT)

Pore Pressure Dissipation Tests (PPDT’s) conducted at various intervals can be used to measure equilibrium water pressure (at the time of the CPT). If conditions are hydrostatic, the equilibrium water pressure can be used to determine the approximate depth of the ground water table. A PPDT is conducted when penetration is halted at specific intervals determined by the field representative. The variation of the penetration pore pressure \(u \) with time is measured behind the tip of the cone and recorded.

Pore pressure dissipation data can be interpreted to provide estimates of:
- Equilibrium piezometric pressure
- Phreatic Surface
- In situ horizontal coefficient of consolidation \(c_h \)
- In situ horizontal coefficient of permeability \(k_h \)

In order to correctly interpret the equilibrium piezometric pressure and/or the phreatic surface, the pore pressure must be monitored until it reaches equilibrium, *Figure PPDT*. This time is commonly referred to as \(t_{100} \), the point at which 100% of the excess pore pressure has dissipated.

A complete reference on pore pressure dissipation tests is presented by Robertson et al. 1992 and Lunne et al. 1997.

A summary of the pore pressure dissipation tests are summarized in Table 1.

![Figure PPDT](image)

Water Table Calculation

\[
D_{water} = D_{cone} - H_{water}
\]

where \(H_{water} = U_e \) (depth units)

Useful Conversion Factors:
- 1 psi = 0.7034 m = 2.31 feet (water)
- 1 bar = 0.0959 psi
- 1 m = 3.28 feet

Figure PPDT